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Herbert J. Gladden

NASA Lewis Research Center

Cleveland, Ohio

The HOST turbine heat transfer subproject is maturing with all programs in

place and many bearing fruit. The accomplishments are interesting, varied, and in

abundance as will be seen at this workshop. The experimental data base are leading
the analyses slightly, particularly in the nonrotating area of research (figs. 1

and 2). This situation is somewhat by tradition and somewhat by design.

The experimental part of the turbine heat transfer subproject consists of six

large experiments, which will be highlighted in this overview, and three of somewhat

more modest scope. Three of the large experiments were conducted in the stationary

frame of reference and are at or near completion. One of the initial efforts was

the starer airfoil heat-transfer program conducted at Allison Gas-Turbine Division.

The non-film-cooled and the showerhead-film-cooled data have already been reported.

Highlights of the data are shown in figure 3. The gill-region film-coollng effort

is currently underway. The investigation of secondary flows in a 90 ° curved duct,

conducted at the University of Tennessee Space Institute, has also been completed.

The first phase examined flows with a relatively thin inlet boundary layer and low

free-stream turbulence. The second phase studied a thicker Inlet boundary layer and

higher free-stream turbulence. A comparison of analytical and experimental

cross-flow velocity vectors is shown for the 60" plane in figure 4. Two experiments

were also conducted at Lewis in the hlgh-pressure facillty. One examined

full-coverage film-cooled vanes, and the other, advanced instrumentation. Reports

on some of these results were published last year.

The other three large experimental efforts were conducted in a rotating

reference frame. An experiment to obtain gas-path airfoil heat-transfer

coefficients in the large, low-speed turbine at United Technologies Research Center

has been completed. Single-stage data with both high- and low-inlet turbulence were

taken in phase I. The second phase examined a one and one-half stage turbine and

focused on the second vane row. Under phase III aerodynamic quantities such as

interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and

surface pressure distribution were measured.

Coolant passage heat-transfer data in a rotating frame are also being obtained

at Pratt & Whitney/Unlted Technologies Research Center. Experiments with smooth

wall serpentine passages and with skewed turbulators have been completed. Some

results of the effect of rotation and heat transfer are shown in figure 5 for the

smooth-wall case. An experiment with turbulators normal to the flow will be started

this year.

The final large experiment will be conducted at Lewis in the warm-core

turbine. This facility, which fully scales a modern turbine stage, is being

modified for laser anemonetry access to the vane and blade passages. Research will



begin in 1987. Once intended to be a step on the way to the hlgh-pressure turbine,

this rig is now the main verification rig in the turbine heat-transfer subproject.

The three smaller and someWhat more fundamental experiments are directed at

important mechanisms. Two are being conducted by Arizona State University. The

first, on impingement cooling, is complete; the second, on tip region heat transfer

simulation, is providing excellent data. An experiment on the heat-transfer effects

of large-scale, hlgh-intensity turbulence, similar to that found at combustor exits,

is also underway at Stanford University.

The analytic efforts in the turbine-heat-transfer subproject are characterized

by efforts to adapt existing codes and analyses to turbine heat transfer. In

general these codes and analyses were well established before HOST became Involved;

however, the applications were not for turbine heat transfer, and extensive revision

has often been required. In some cases the analytic and experimental work were part
of the same contract.

The well-known STAN5 boundary-layer code was modified by Allison Gas Turbine

Division to define starting points and transition to turbulent flow to accon_odate

their data, with and without film cooling, as well as data in the literature.

United Technologies Research Center assessed its three-dlmenslonal boundary

layer code and modified it to allow for easier application of turbine type Invlscid

edge conditions. The same code is being modified for use as a two-dimensional

unsteady code in order to analyze the rotor-stator interaction data.

The also well-known three-dimensional Navier-Stokes TEACH code has been

modified by Pratt & Whitney to incorporate rotational terms. The modified code has

been delivered to NASA Lewis and work has begun on it here.

A fully elliptic three-dlmensional Navier-Stokes code has been under

development at Scientific Research Associates (SPA) for many years. It was

primarily directed at inlets and nozzles. SRA, first as a subcontractor to Allison

Gas Turbine Division and now as a prime contractor, has been modifying the code for

turbine applications. This includes grid work for turbine airfoils, adding an

energy equation and turbulence modellng, and improved user friendliness. The code

has been installed on the Lewis Cray XMP, and a first report on its use for turbine

heat-transfer has been published. A comparison with the Allison nonrotating

experimental data is shown in figure 6.

Finally, a fundamental study on numerical turbulence modeling, directed

specifically at the airfoil in the turbine environment, is underway at the

University of Minnesota.
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Figure 2
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